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Abslracl - We propose a new adjoint dy&mic neural 
network (ADNN) technique aimed at enhancing computer- 
aided design (CAD) of high-speed VLSI modules. A novel 
formulation for exact sensitivities is derived employing 
Lagrange functions approach, and by defining an sdjoint of 
a dynamic neural network (DNN), for the first time. The 
proposed ADNN is a dynamic model that we solve using 
integration backwards through time. One ADNN solution 
cuu be used to effciently compute exact sensitivities of the 
corresponding DNN with respect to all its parameters. Using 
these sensitivities, we developed u training algorithm that 
facilitates DNN learning of nonlinear transients directly from 
continuous time-domain waveform data. Resulting accurate 
and fast DNN models can be straightaway used for carrying 
out high-speed VLSI CAD in SPICE-like time-domain 
environment. The technique can also speed-up physics-based 
nonlinear circuit CAD through raster sensitivity 
computations. Applications of the proposed ADNN technique 
in transient modeling and nonlinear design are demonstrated 
through high-speed interconnect driver examples. 

Over the last decade, a CAD approach based on artificial 
neural networks (ANN) gained recognition in RF, 
microwave and VLSI community [l]. Fast neural models 
trained using appropriate input-output data can accurately 
represent device or circuit behaviors [Z]. A most recent 
trend in this area is the use of a unique category of ANN 
called DNN [3] for dynamic nonlinear CAD. In [3], DNN 
have been shown to address l,arge-signal modeling and 
design in the case of nonlinear periodic RF/microwave 
responses in harmonic balance (HB) environment 141. 

In this paper, we further expand DNN into an even mope 
powerful technique that can handle nonlinear transients. 
Accurate and fast representation of nonlinear transient 
behaviors is a key to successful digital high-speed VLSI 
interconnect CAD including multi-chip modules and 
multi-layer PCBs. Extensive research has been conducted 
on modeling and simulation of interconnect networks 
resulting in both circuit- and ANN-based techniques 
[5][6]. Currently, CAD of interconnect modules with 
nonlinear terminations is an active research subject [7] and 
this paper is targeted toward accomplishing efficient 
neural based nonlinear transient modeling and design of 
high-speed interconnect components including physics- 
based effects. 

In order for the DNN to learn txmsient data, sensitivities 
(derivatives) of the corresponding training error w.1.t. DNN __ 
weights are essential. On the other hand, transient design IL= 
requires se”Smvmes of the target functions w.r.t. 
geometrical/physical parameters of nonlinear components. A 
paramount theory for sensitivity analysis is the adjoint 
sensitivity technique pioneered iu [8]. Following this, various 
adjoint sensitivity techniques such as HB-based [4], circuit- 
based [9], and static ANN-based [lo] techniques have been 
developed. In this paper, exact adjoint sensitivity for DNN is 
iuvestigared to enable transient modeling and design. 

For the fmt time, we propose a new ADNN technique for 
nonlinear transients such as those in high-speed 
interconnects with nonlinear terminations. An elegant 
formulation for exact adjoint sensitivities is derived 
employing Lagrange functions approach, by defining an 
adjoiut of the DNN. These formulae are exploited to 
engineer a robust training algorithm that facilitates &cient 
DNN training directly from transient data. These 
sensitivities can also lead to faster nonlinear circuit design 
including geometrical/physical parameters. The proposed 
technique is demonstrated through DNN modeling and 
circuit design examples of nonlinear iutercounect drivers. 

In time-domain, a nonlinear circuit can be represented 
by a DNN [3] of order n Inputs to DNN include dynamic 

inputs u(t) , corresponding k” -order derivatives u”‘(t), 

and static inputs p, Here, p is a ny. -vector including 

geometricaUphysic& parameters (e.g., channel width). The 
DNN equations of the nonlinear circuit are given by, 

i,@) = “*(‘) 

i” @) = fm @.u’n-l’w ,... ,u’“(t) u(t) ” (t) . . . ” (0 w) , I ” * , / 7 

where each Y, is a nY -vector representing a state of the 

DNN. Here, f,, represents a MLP neural network [1][2] 

with trainable weight parameters w Output signals of the 
DNN model are given by y(t) = vI (f) 
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III. PROPOSED ADNN SENSITIVE TECHNIQUE 

We defme an energy f&Co” E for DNN that represents 
a typical design function in transient analysis [91 as 

E = p f(y(j)) df 3 (2) 

where [T, , T, ] is the time-interval of interest. The ptxpose 
of OUI sensitivity technique .is to determine the derivatives 
of E w.r.t. DNN weights w and static inputs p. The 

challenge here is that, y(t) has a dynamic and not a 
simple algebraic relationship with w and p. For 
sensitivity derivation, we define a Lagrange function L as 

n-1 
L=f(Y(j))+P”‘(i,-f~,)+CP,T(Y,-Y,+I)i (3) 

,=I 

where each y^, represents time-dependent Lagrange 

parameters independent of w and p, Subject to (I), 
derivatives of E can be expressed in terms of L in (3) as 

As (4) holds good for arbitrary choice of i, ‘s, we 

propose a new adjoint-DNN or ADNN as 

af T ; =-rr_i, -i,-, n JV, 
where each i, is a nY -vector representing a state of the 

ADNN. As can be see” from (1) and (5), both DNN and 
corresponding ADNN have the same “umber of states. 

Input to ADNN (i.e. 3) excites state C, that corresponds 

to output of the original-DNN. Outputs of the ADNN arc 
given by j(r) = i,(t). Using (5) together with a boundary 

condition i(T,) = 0 , equation (4) can be expressed in tams 

of ADNN output g(t) and MLP network fm in original 
DNN as 

(6) 

where + ts a Jacobian matrix containing derivatives 

of the MLP w.r.t. individual weight parameters in w 

For example, consider f,, being a 3.layer MLP. Let 

N, denote number of neurons in I’ layer. Let wb 

represent weight of the link between j” naro” of I- lm 

layer and i* neurnn of I” layer. We define z:(t) as 

instantaneous output of the i” neuron in the I” layer. 
Sensitivities in (6) can then be systematically evaluated as 

where j, (1) represents k” ADNN output. Sensitivity of 

E w.r.t. i* static DNN input pi can be evaluated using 

IV. ADNN SENSKIXTIES FOR DNN TRAINING 

Our elegant choice of E allows direct utilization of 
ADNN sensitivity formulation in section III, for DNN 
training “sing nonlinear transients. Let u;(t) and yi (t) 

represent i” input and output wavefornu sufficiently 
sampled in the time-interval [q,T,] , to be used as 
training data. The objective of DNN training is to adjust 
DNN parameters w such that the training error function 

is minimized. Here, y’(r) represents DNN prediction of 

i” output signal and N, represents total number of 

training wavefotms pairs .( u;(r), y;(t) ). Since f in (2) 

can be any function, we judiciously choose f(y(t)) as 

f(y(r))=~~((Y’(t)-Y:,(t)n (10) 

to establish consistency lxmeen energy function E and training 
mar E, Dynamic mining process for i” train@ waveform 

pair (u;(t) , y;(t) ) is explained here. Give” u;(t) , original 

DNN equations in (1) are integrated forward fmm time T, up to 
T, with user-spxifled initial condition v(T,), res”lti”g in 

current DNN outputs y’(f) We substitote y’(r) in (10) and 
then integrate ADNN equations in (5) backwards fmm time T, 

down to T, , sating i(T,) =0 Finally, dynamic amr 
sensitivities computed using (7) are supplied to a gradient-bawd 
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tmining algorithm (e.g. quasi-Newton) for determining the 
weight update during DNN haining prwzess shown in Fig. 1. 
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Fig. 1. Block diagram of the DNN training exploiting exact 
sensitivities fnxn pmposed ADNN. D is a symbol for differentiation. 

V. EXAMPLES 

A. CMOS Inverter 
This example is for valid&g the proposed ADNN sensitivity 

technique. A DNN is trained to lam transient behaviors of the 
CMOS invater and anx derivatives needed during tmining are 
computed via our ADNN. Inputs to the DNN model include 
dynamic input v,. (input voltage) and static input W (hmsi.stor 

size). The model output is v,, (output voltage). Training 
waveforms a~ genmti using level-49 BSIM3V3 HSPICE 
model. A DNN of order n = 1 including a 3.layer MLF’ with 8 
hidden neurons is used. Sensitivities of the dynamic tmining 
enur function w.r.l.t DNN parametem using the pmposed ADNN 
technique acctimtely match those 6um petiation method as 
shown in Table I, thus validating the pmlxxd ADNN. 

TABLE I. COMPARISON OF SENSITIVITY VALUES. 

B. Circuit-Based High-Speed Interconnect Driver 
This pmctical example shows the utility of the propxed 

ADNN sensitivity technique in transient modeling. A DNN 
model of a CMOS iwaler driver is developed Dynamic and 

static DNN inputs ae u=[v,“, i_lT and p=[w,]’ 
respectively, and DNN output is y = [v,]r Two sets of 
training waveforms, namely, signal data and crosstalk data are 
generated tc@ac& each transistor in the driver circuit by level- 
49 BSIM3V3 HSPICE model. Signal data is collected by 
supplying the driver with different values for pulse risetime [O.l 
‘Oh] and pulse amplitude [2.3 2.7Vj, and varying interconnect- 
la& d [2 %“I] and CMOS channel width W, [lo0 240~1. 
Cmsstdk data is generated for diffant pulse amplitudes r-l.0 
3.OVj using the above rise-time and W N ranges. Time-interval 
of interest is [0 6ns]. DC values of input signals ax used as in&l 
conditions for integradng the DNN fonvard 

DNN’s of different dynamic orden (n) and with 
different f,, are trained using exact error derivatives of 
the proposed ADNN, and the model accuracies are shown 
in Table II. A single ADNN evaluation is sufficient for 
computing all the derivatives for each training waveform 
pair. Trained DNN model of order 2 with 50 hidden 
neur”n~ is then used 3 times in the interconnect circuit of 
Fig. 2. As can be seen in Fig. 3, excellent agreement is 
achieved between HSPICE simulations and our DNN- 
based interconnect simulations. 

TABLE II: DNN MODEL ACCURACIES FOR DIFFERENT CASES 
No. ofbidden 1 Avg. 1 

with 50 hidden 

d 

Fig. 2. A 3-conductor interconnect circuit loaded with nonlinear 
buffers used for generating test waveforms. 

(4 (b) 

Fig. 3. Comparison of interconnect simulation of Fig. 2 using 
DNN models (0) and HSPICE (-1. (a) Output signal Y, under 
tw” different excitations and (b) Crosstalk signals v,and Y,. 
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C. Physics-Based Multistage Driver 
In this example, we demonstrate the relevance of the 

proposed ADNN technique for physics-based transient design 
purpose. A lpm 4.stage CMOS driver in Fig. 4 is considered. 
Training data is obtained using physics-based MINIMOS 
simulator [I 11. The driver load is a single transmissionlime 
with parameters R=36R/m, L=36OnH/m C=lCGpF/m and 
Ci=O.OlS/m, and terminated with a 5pF capacitor. The DNN 
has the same inputs and outputs as those in example B. 
Training waveforms are generated for different values of rise- 
time T, LO.25 0.75ns] and pulse amplitude A [4.S SSV], and 
v’uying interconnect-length d [O.OSm O.l4m]. Driver size is 
also pertnrbed SO% around the nominal value. A DNN 
structure of dynamic order 1 and 30 hidden neurons in fANN, 
trained using the derivatives from the proposed ADNN 
technique resulted in a DNN model with average test ermr of 
0.25%. DNN model’s prediction of output voltages with 
independent test waveforms match very well as shown in Fig. 
5, validating our transient DNN modeling. 

Rg. 4. A 4.stage CMOS driver to be modeled by the pmposed 
ADNN technique using physics-based data from MINIMOS. 

Fig. 5. Comparison of multi-stage CMOS driver voltage outputs 
from DNN (0) trained using pmposed ADNN and test data (-). 

Electrical power is an important criterion for high-speed 
digital design. We use our ADNN technique for 
computing sensitivity of average output power of the 
driver w.r.t. driver-size under transient excitation. 
Sensitivities obtained using the proposed ADNN 
accurately match those from physics-based MINIMOS 
perturbations as shown in Fig. 6. Total CPU-time taken by 
the ADNN is 2s as compared to 6254s taken by the 
MINIMOS, proving the significance of our proposed 
ADNN technique in nonlinear transient design. 

CONCLUSIONS 
A new ADNN technique for exact adjoint sensitivities 

of DNN’s in transient environment has been proposed. 
The technique has been used to efficiently train DNN’s for 
learning transient behaviors of nonlinear high-speed 
interconnect circuits, for the first time. The technique 
facilitates a means of providing sensitivities of electrical 
criteria w.r.t. geometrical/physical design parameters, with 
physics-level accuracies but only requiring tiny fraction of 
the CPU-time taken by physics-based sensitivity 
computations. This work is significant for efficient 
modeling simulation and design of high-speed VLSI 
interconnect modules under transient excitations. 

0 30 

Fig. 6. Comparison of power sensitivities of multi-stage driver 
computed using proposed ADNN and physics-based MINIMOS. 
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