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Abstract — We propoese a new adjoint dynamic neural
network (ADNN) technique aimed at enhancing computer-
aided design (CAD) of high-speed VLSI modules. A novel
formulation for exact sensitivities is derived employing
Lagrange functions approach, and by defining an adjoint of
a dynamic neural network (DNN), for the first time. The
proposed ADNN is a dynmamic model that we solve using
integration backwards through time. One ADNN solution
can be used to efficiently compute exact sensitivities of the
corresponding DNN with respect to all its parameters. Using
these sensitivities, we developed a training algorithm that
facilitates DNN learning of nonlinear transients directly from
continuous time-domain waveform data. Resulting accurate
and fast DNN models can be straightaway used for carrying
out high-speed VLSI CAD in SPICE-like time-domain
enviromment, The technique can also speed-up physics-based
nonlinear circuit CAD  through faster sensitivity
computations. Applications of the proposed ADNN technique
in transient modeling and nonlinear design are demonstrated
through high-speed interconnect driver examples.

1. INTRODUCTION

Qver the last decade, a CAD approach based on artificial

neural networks (ANN) gained recognition in RF,
microwave and VLSI community [1]. Fast neural models
trained using appropriate input-output data can accurately
represent device or circuit behaviors [2]. A most recent
trend in this area is the use of a unique category of ANN
called DNN (3] for dynarmic nonlinear CAD. In [3], DNN
have been shown to address large-signal modeling and
design in the case of nonlinear periodic RF/microwave
responses in harmonic balance (HB) environment [4].

In this paper, we further expand DNN into an even more
powerful technique that can handle nonlinear transients.
Accurate and fast representation of nonlinear transient
behaviors is a key to successful digital high-speed VLSI
interconnect CAD including multi-chip modules and
multi-layer PCBs. Extensive research has been conducted
on modeling and simulation of interconnect networks
resulting in both circuit- and ANN-based techniques
[5][6]. Currently, CAD of interconnect modules with
nonlinear terminations is an active research subject [7] and
this paper is targeted toward accomplishing efficient
neural based nonlinear transient modeling and design of
high-speed interconnect components including physics-
based effects.
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In order for the DNN to learn transient data, sensitivities
{derivatives) of the corresponding training error w.r.t. DNN
weights are essential. On the other hand, transient design
requires sensitivities of the target functions wurt.
geometrical/physical parameters of nonlinear components. A
paramount theory for sensitivity analysis is the adjoint
sensitivity technique pioneered in [8]. Following this, various
adjoint sensitivity techniques such as HB-based [4], circuit-
based [9], and static ANN-based [10] techniques have been
developed. In this paper, exact adjoint sensitivity for DNN is
investigated to enable transient modeling and design.

For the first time, we propose a new ADNN technique for
nonlinear transients such as those in high-speed
interconnects with nonlinear terminations. An elegant
formulation for exact adjoint sensitivities is derived
employing Lagrange functions approach, by defining an
adjoint of the DNN. These formulae are exploited to
engineer a robust training algorithm that facilitates efficient
DNN training directly from transient data. These
sensitivities can also lead to faster nonlinear circuit design
including geometrical/physical parameters. The proposed
technique is demonstrated through DNN- modeling and
circuit design examples of nonlinear interconnect drivers.

II. DYNAMIC NEURAL NETWORKS
In time-domain, a nonlinear circuit can be represented
by a DNN [3] of order n. Inputs to DNN include dynamic
inputs u(¢), corresponding ™ -order derivatives u'*'(t),
and static inputs p. Here, p is a n,-vector including

geometrical/physical parameters (e.g., channel width). The
DNN equations of the nonlinear circuit are given by,

v () = v, (1)
. (1)
v = v (D)

V(1) = Fon @2 (0hett® @00, (1), v (W)
where each v, is a n, -vector representing a state of the

DNN. Here, f, Tepresents a MLP neural network {1](2]
with trainable weight parameters w . Qutput signals of the
DNN model are given by y(t) = v, (t).
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TI1. PROPOSED ADNN SENSITIVITY TECHNIQUE

We define an energy function E for DNN that represents -

a typical design function in transient analysis {9] as

E=[fyun ar, @

where [T, T,] is the time-interval of interest. The purpose

of our sensitivity fechnique js to determine the derivatives
of E wurt. DNN weights w and static inputs p. The

challenge here is that, y(#) has a dynamic and not a
simple algebraic relationship with w and p. For
sensitivity derivation, we define a Lagrange function L as

r-1
L=f(yN+5,] 0, = fan)+ 2970, =v,), (3)

Vv,
b
parameters independent of w and p. Subject to (1),

~ derivatives of E can be expressed in terms of L in (3) as

where each represents time-dependent Lagrange

Tl
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As (4) helds good for arbitrary choice of #;’s, we

dr

propose a new adjoint-DNN or ADNN as
T ,
%, = ~ W vV o+ Cl

' o, " oy
T
v, =— ang v,—¥
v, (3
T
An == af;\:N 6:1 - ﬁn—l
3

where each ¥, is a n,-vector representing a state of the

ADNN. As can be seen from (1) and (5), both DNN and
corresponding ADNN have the same number of states.

Input to ADNN (i.e. —gj—r) excites state ¥, that corresponds
'y

to outpwt of the original-DNN. Qutputs of the ADNN are
givenby ¥(r) = ¥ (2). Using (5) together with a boundary
condition ¥(T,) =0, equation (4) can be expressed in terms
of ADNN output (z) and MLP network f,,, in original
DNN as

dE

aw [ Poww

i ow

(6)

where

{_;""NN is a Jacobian matrix containing derivatives

w
of the MLP w.r.t. individual weight parameters in w .

For example, consider f,,, being a 3-layer MLP. Let
N, denote number of neurcns in " layer. Let w:j

represent weight of the link between j® neuron of /-1"

layer and i neuron of " layer. We define z;(r) as
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instantaneous output of the {® neuron in the [™ layer.
Sensitivities in (6) can then be systematically evaluated as

" —j:’yk(z) 2 Odl=31<k=i<n,

P Y

k=1

{1
9,0 ZOU-Z @) 2 @)t I =2

where #,(1) represents &™ ADNN output. Sensitivity of
E w.r.t. i* static DNN input p, can be evaluated using

dE

D Y ww P o2o0-20d . ®)

k=1 j=1
IV. ADNN SENSITIVITIES FOR DNN TRAINING

Qur elegant choice of E allows direct utilization of
ADNN sensitivity formulation in section IH, for DNN
training using nonlinear transients. Let # (1) and y.(¢)
represent " input and output waveforms sufficiently
sampled in the time-interval [7,7,], to be used as

training data. The objective of DNN training is to adjust
DNN parameters w such that the training error function

AR i i 2
E=[ 2ol o-sof ©)

is minimized. Here, ¥'(r) represents DNN prediction of

i" output signal and N, represents total number of
training waveforms pairs () (?), y;(t)). Since f in (2)

can be any function, we judiciously choose f(y(z)) as

ﬂﬂm=§ﬂbw%ﬂmw (10)
i=]

to establish consistency between energy function £ and training
emor E, . Dynamic training process for {* training waveform
pair (& (2), y,(1)) is explained here. Given w,(?), original
DNN equations in (1) are integrated forward from time 7, up 1o
T, with user-specified initial condition w(T}), resulting in
current DNN outputs y'(t) We substitute y'(¢) in (10) and
then integrate ADNN equations in (5) backwards from time T,
down to T, seting #(T,)=0. Finally, dynamic error
sensitivities computed using (7) are supplied to a gradient-based



training algorithm (e.g. quasi-Newton) for determining the
weight update during DNN training process shown in Fig; 1.
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Fig. 1. Block diagram of the DNN training exploiting exact
sensitivities from proposed ADNN. D is a symbol for differentiation.

V. EXAMPLES

A. CMOS Inverter

This example is for validating the proposed ADNN sensitivity
technique. A DNN is trained to learn transient behaviors of the
CMOS inverter and error derivatives needed during training are
computed via cur ADNN. Inputs to the DNN model include
dynamic input v,, (input voltage) and static input W (transistor
size). The model output is v, (output voltage). Training
waveforms are generated using level49 BSIM3V3 HSPICE
model. A DNN of order 7 =1 including a 3-layer MLP with 8
hidden neurons is used. Sensitivities of the dynamic training
etror function w.r.t. DNN parameters using the proposed ADNN
technique accurately match those from perturbation method as
shown in Table I, thus validating the proposed ADNN,

TABLE I. COMPARISON OF SENSITIVITY V ALUES,

DNN Perturbation Proposed Difference
Sensitivity Method ADNN (as %)
IE, 0w | 24327e02 | 24336002 |  0.036
OE; 05 | 11 5897003 | 415904003 | 0.4
OE, [ows | 462217e-04 | +6.2241e04 | 0038
OE, /0wy | _1.5563¢-05 | -1.5545¢-05 0.116
OE, (oW | _15638e+01 | -1.5748e401 0.703

B. Circuit-Based High-Speed Interconnect Driver

This practical example shows the utility of the proposed
ADNN sensitivity technique in transient modeling. A DNN
model of a CMOS inverter driver is developed. Dynamic and

static DNN inputs are wu=[v,,i, 1 and p=[W,]
respectively, and DNN output is y=[v_.]'. Two sets of
training waveforms, namely, signal data and crosstalk data are
generated replacing each transistor in the driver circuit by level-
49 BSIM3V3 HSPICE model. Signal data is collected by
supplying the driver with different values for pulse rise-time [0.1
"0.5ns] and pulse amplitude [2.3 2.7V], and varying interconnect-
length @ [2 Scm] and CMOS channel width W,, [100 240um].
Crosstalk data is generated for different pulse amplitudes [-1.0
3.0V] using the above rise-time and W , ranges. Time-interval
of interest is [0 6ns). DC values of input signals are used as initial
conditions for integrating the DNN forward.

DNN’s of different dynamic orders (1) and with
different f,,,, are trained using exact error derivatives of

the proposed ADNN, and the model accuracies are shown
in Table II. A single ADNN evaluation is sufficient for
computing all the derivatives for each training waveform
pair. Trained DNN model of order 2 with 50 hidden
neurons is then used 3 times in the interconnect circuit of
Fig. 2. As can be seen in Fig. 3, excellent agreement is
achieved between HSPICE simulations and our DNN-
based interconnect stmulations.

TABLE II; DNN MODEL ACCURACIES FOR DIFFERENT CASES

No. of hidden Avg. Order of DNN Avg.
nearons test with 50 hidden Test
for DNN of order 2 error neurons error
30 1.05% 1 0.38%
50 0.42% 2 0.29%
70 0.71% 3 0.85%

Fig. 2. A 3-conductor interconnect circuit loaded with nonlinear
buffers used for generating test waveforms.
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Fig. 3. Comparison of interconnect simulation of Fig. 2 using
DNN models (o) and HSPICE (—). (a) Output signal v, under
two different excitations and (b) Crosstalk signals v, and vs.
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C. Physics-Based Multistage Driver

In this example, we demonstrate the relevance of the
proposed ADNN technique for physics-based transient design
purpose. A 1jum 4-stage CMOS driver in Fig. 4 is considered.
Training data is obtained using physics-based MINIMOS
simulator [11], The driver load is a single transmissionline
with parameters R=36Q/m, 1L=360nH/m, C=100pF/m and
G=0.015/m, and terminated with a 5pF capacitor. The DNN
has the same inputs and outputs as those in example B.
Training waveforms are generated for different values of rise-
time 7, [0.25 0.75ns] and pulse amplitude A [4.5 5.5V], and
varying interconnect-length d [0.08m 0.14m). Driver size is
also perturbed 50% around the nominal value. A DNN
structure of dynamic order 1 and 30 hidden neurons in f, ..,
trained using the derivatives from the proposed ADNN
technique resulted in a DNN model with average test error of
0.25%. DNN model’s prediction of output voltages with
independent test waveforms match very well as shown in Fig.
5, validating our transient DNN modeling.

° Vbp
142 4 /6 4 ”184 1/54
12 1/6 118 1/54
—
Fig. 4. A 4-stage CMOS driver to be modeled by the proposed
ADNN technique using physics-based data from MINIMOS.
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Fig. 5. Comparison of multi-stage CMOS driver voliage outputs
from DNN (o) trained using proposed ADNN and test data (—).

Electrical power is an important criterion for high-speed
digital design. We use cur ADNN technique for
computing sensitivity of average output power of the
driver w.r.t. driver-size under {transient excitation.
Sensitivities obtained using the proposed ADNN
accurately match those from physics-based MINIMOS
perturbations as shown in Fig. 6. Total CPU-time taken by
the ADNN is 2s as compared to 6254s taken by the
MINIMOS, proving the significance of our proposed
ADNN technique in nonlinear transient design.
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CONCLUSIONS

A new ADNN technique for exact adjoint sensitivities
of DNN’s in transient environment has been proposed.
The téchnique has been used to efficiently train DNN’s for
learning transient behaviors of nonlinear high-speed
interconnect circuits, for the first time. The technique
facilitates a means of providing sensitivities of electrical
criteria w.r.t. geometrical/physical design parameters, with
physics-level accuracies but only requiring tiny fraction of
the CPU-time taken by physics-based sensitivity
computations. This work is significant for efficient
modeling simulation and design of high-speed VLSI
interconnect modules under transient excitations.

0.307 B MINIMOS
o ADNN

0.25 1

80% 100%
Driver size (as % of nominal value)

120%

Fig. 6. Comparison of power sensitivities of multi-stage driver
compuied using proposed ADNN and physics-based MINIMOS.
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